Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3949, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402739

RESUMO

Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance.


Assuntos
Pradaria , Herbivoria , Animais , Banco de Sementes , Solo , Plantas , Nutrientes , Ecossistema , Mamíferos
2.
Nature ; 611(7935): 301-305, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323777

RESUMO

Enrichment of nutrients and loss of herbivores are assumed to cause a loss of plant diversity in grassland ecosystems because they increase plant cover, which leads to a decrease of light in the understory1-3. Empirical tests of the role of competition for light in natural systems are based on indirect evidence, and have been a topic of debate for the last 40 years. Here we show that experimentally restoring light to understory plants in a natural grassland mitigates the loss of plant diversity that is caused by either nutrient enrichment or the absence of mammalian herbivores. The initial effect of light addition on restoring diversity under fertilization was transitory and outweighed by the greater effect of herbivory on light levels, indicating that herbivory is a major factor that controls diversity, partly through light. Our results provide direct experimental evidence, in a natural system, that competition for light is a key mechanism that contributes to the loss of biodiversity after cessation of mammalian herbivory. Our findings also show that the effects of herbivores can outpace the effects of fertilization on competition for light. Management practices that target maintaining grazing by native or domestic herbivores could therefore have applications in protecting biodiversity in grassland ecosystems, because they alleviate competition for light in the understory.


Assuntos
Biodiversidade , Herbivoria , Luz , Plantas , Animais , Pradaria , Mamíferos/fisiologia , Nutrientes/metabolismo , Plantas/classificação , Plantas/metabolismo , Plantas/efeitos da radiação , Fertilizantes
3.
PLoS One ; 17(11): e0276789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36346799

RESUMO

Altered climate, nutrient enrichment and changes in grazing patterns are important environmental and biotic changes in temperate grassland systems. Singly and in concert these factors can influence plant performance and traits, with consequences for species competitive ability, and thus for species coexistence, community composition and diversity. However, we lack experimental tests of the mechanisms, such as competition for light, driving plant performance and traits under nutrient enrichment, grazer exclusion and future climate. We used transplants of Silene latifolia, a widespread grassland forb in Europe, to study plant responses to interactions among climate, nutrients, grazing and light. We recorded transplant biomass, height, specific leaf area (SLA) and foliar carbon to nitrogen ratio (C:N) in full-factorial combinations of future climate treatment, fertilization, grazer exclusion and light addition via LED-lamps. Future climate and fertilization together increased transplant height but only in unlighted plots. Light addition increased SLA in ambient climate, and decreased C:N in unfertilized plots. Further, transplants had higher biomass in future climatic conditions when protected from grazers. In general, grazing had a strong negative effect on all measured variables regardless of added nutrients and light. Our results show that competition for light may lead to taller individuals and interacts with climate and nutrients to affect traits related to resource-use. Furthermore, our study suggests grazing may counteract the benefits of future climate on the biomass of species such as Silene latifolia. Consequently, grazers and light may be important modulators of individual plant performance and traits under nutrient enrichment and future climatic conditions.


Assuntos
Silene , Humanos , Biomassa , Plantas , Nutrientes , Nitrogênio , Pradaria , Ecossistema
4.
Glob Chang Biol ; 26(12): 6742-6752, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33020977

RESUMO

Variation in intraspecific traits is one important mechanism that can allow plant species to respond to global changes. Understanding plant trait responses to environmental changes such as grazing patterns, nutrient enrichment and climate warming is, thus, essential for predicting the composition of future plant communities. We measured traits of eight common tundra species in a fully factorial field experiment with mammalian herbivore exclusion, fertilization, and passive warming, and assessed how trait responsiveness to the treatments was associated with abundance changes in those treatments. Herbivory exhibited the strongest impact on traits. Exclusion of herbivores increased vegetative plant height by 50% and specific leaf area (SLA) by 19%, and decreased foliar C:N by 11%; fertilization and warming also increased height and SLA but to a smaller extent. Herbivory also modulated intraspecific height, SLA and foliar C:N responses to fertilization and warming, and these interactions were species-specific. Furthermore, herbivory affected how trait change translated into relative abundance change: increased height under warming and fertilization was more positively related to abundance change inside fences than in grazed plots. Our findings highlight the key role of mammalian herbivory when assessing intraspecific trait change in tundra and its consequences for plant performance under global changes.


Assuntos
Herbivoria , Tundra , Animais , Mudança Climática , Nutrientes , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...